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Analyzing Discrete-Time Systems in the Time Domain

The purpose of this lab is to

▪ Develop the notion of a discrete-time system.

▪ Discuss the concepts of linearity and time invariance.

▪ Learn how to compute the output signal for a linear and time-invariant

system using convolution.

▪ Understand the graphical interpretation of the steps involved in

carrying out the convolution operation.

▪ Learn the concepts of causality and stability.



Discrete-Time System

▪ A discrete-time system is a mathematical formula, method or

algorithm that defines a cause-effect relationship between a set of

discrete-time input signals and a set of discrete-time output signals.



Discrete-Time System

▪ The input-output relationship of a discrete-time system may be expressed

in the form

y[n] = Sys{x[n]}

▪ A system that simply multiplies its input signal by a constant gain factor K

y[n] = Kx[n]

▪ A system that delays its input signal by m samples

y[n] = x[n − m] 

▪ A system that produces an output signal proportional to the square of the

input signal

y[n] = K [x[n]]2



Linearity

▪ Linearity property will be very important as we analyze and design

discrete-time systems.

▪ Conditions for linearity of a discrete-time system are:

Sys{x1[n] + x2[n]} = Sys{x1[n]} + Sys{x2[n]}

Sys{α1 x1[n]} = α1Sys{x1[n]}



Linearity

▪ The additivity rule can be stated as follows:

The response of a linear system to the sum of two signals is the same

as the sum of individual responses to each of the two input signals.

Sys{x1[n] + x2[n]} = Sys{x1[n]} + Sys{x2[n]}

▪ The homogeneity rule can be stated as follows:

Scaling the input signal of a linear system by a constant gain factor

causes the output signal to be scaled with the same gain factor.

Sys{α1 x1[n]} = α1Sys{x1[n]}



Linearity: Superposition Principle

▪ The two criteria can be combined into one equation which is referred to as

the superposition principle.

▪ The response of the system to a weighted sum of any two input signals is

equal to the same weighted sum of the individual responses of the system

to each of the two input signals.

Sys{α1 x1[n] + α2 x2[n]} = α1 Sys{x1[n]} + α2 Sys{x2[n]}



Linearity: Superposition Principle

▪ A generalization of the principle of superposition for the weighted

sum of N discrete-time signals is expressed as



Example 3.1

For each of the discrete-time systems described below, determine

whether the system is linear or not:



Example 3.1 (a) – Solution



Example 3.1 (b) – Solution



Example 3.1 (c) – Solution



Time Invariance

▪ Let a discrete-time system be described with the input-output

relationship

y[n] = Sys{x[n]}

▪ For the system to be considered time-invariant, the only effect of

time-shifting the input signal should be to cause an equal amount of

time shift in the output signal.

Sys{x[n]} = y[n] implies that Sys{x[n − k]} = y[n − k]



Time Invariance

▪ Condition for time-invariance:

Sys{x[n]} = y[n]      implies that      Sys{x[n − k]} = y[n − k]



Time Invariance

▪ The time-invariant nature of a system can be characterized by the

equivalence of the two configurations shown in Figure.



Example 3.2

For each of the discrete-time systems described below, determine

whether the system is time-invariant or not:



Example 3.2 (a) – Solution 



Example 3.2 (b) – Solution 



Example 3.2 (c) – Solution 



Problem 3.1

A number of discrete-time systems are specified below in terms of their

input-output relationships.

For each case determine if the system is linear and/or time-invariant.



Problem 3.1 (a) – Solution



Problem 3.1 (c) – Solution



Problem 3.1 (e) – Solution



Problem 3.1 (f) – Solution



Problem 3.2 (b)

Determine if the system is linear or not.



Problem 3.2 (b) – Solution



Problem 3.3



Problem 3.3 – Solution 

Input-output relationship of the system does not change when the order

of the two subsystems is changed.



DTLTI Systems

▪ Discrete-time systems that are both linear and time-invariant will

play an important role in the rest of this textbook.

▪ We will develop time- and frequency-domain analysis and design

techniques for working with such systems.

▪ To simplify the terminology, we will use the acronym DTLTI to refer

to discrete-time linear and time-invariant systems.



Difference Equations for Discrete-Time Systems

▪ In chapter 2, we have discussed methods of representing continuous-

time systems with differential equations.

▪ Using a similar approach, discrete-time systems can be modeled with

difference equations involving current, past, or future samples of

input and output signals.

▪ We will focus on difference equations for DTLTI systems.



Moving-Average Filter

▪ A length-N moving average filter is a simple system that produces an

output equal to the arithmetic average of the most recent N samples

of the input signal.

▪ The general expression for the length-N moving average filter is



Moving-Average Filter



Example 3.4: Length-2 Moving-Average Filter

▪ A length-2 moving average filter produces an output by averaging

the current input sample and the previous input sample.

▪ This action translates to a difference equation in the form
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Example 3.4: Length-2 Moving-Average Filter



Example 3.4: Length-4 Moving-Average Filter

▪ A length-4 moving average filter produces an output by averaging

the current input sample and the previous three input samples.

▪ This action translates to a difference equation in the form
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Example 3.4: Length-4 Moving-Average Filter



Problem 3.7 



Problem 3.7 – Solution 



Interactive Demo: ma_demo1



Interactive Demo: ma_demo2



Interactive Demo: ma_demo3



Continuous-Time Convolution

▪ A convolution is an integral that expresses the amount of overlap of

one function when it is shifted over another function.

https://mahfuzdotsite.files.wordpress.com/2018/12/convolution_anim1.gif

https://mahfuzdotsite.files.wordpress.com/2018/12/convolution_anim1.gif


Image Processing: Convolution vs. Correlation

▪ Correlation consists of moving the center of a kernel over an image,

and computing the sum of products at each location.

▪ Convolution is the same as correlation, except that the correlation

kernel is rotated by 180°.



Image Processing: Smoothing (Lowpass) Spatial Filters

▪ Smoothing (averaging) spatial filters are used to reduce sharp

transitions in intensity.

▪ An obvious application of smoothing is noise reduction.

▪ Smoothing is used to reduce irrelevant detail in an image.



Image Processing: Smoothing (Lowpass) Spatial Filters



Image Processing: Sharpening (Highpass) Spatial Filters

▪ The simplest derivative operator (kernel) is the Laplacian, which, for

a function (image) f (x, y) of two variables, is defined as

▪ In the x-direction, we have

▪ In the y-direction, we have



Image Processing: Sharpening (Highpass) Spatial Filters

▪ It follows from the preceding three equations that the discrete

Laplacian of two variables is



Image Processing: Sharpening (Highpass) Spatial Filters



CVIPtools



CVIPtools



CVIPtools



CVIPtools



Convolutional Neural Networks

https://mlnotebook.github.io/post/CNN1/

https://mlnotebook.github.io/post/CNN1/


Convolutional Neural Networks



Convolutional Neural Networks



Continuous-Time Convolution

▪ A convolution is an integral that expresses the amount of overlap of

one function when it is shifted over another function.



Discrete-Time Convolution

▪ The output signal y[n] of a DTLTI system is obtained by convolving

the input signal x[n] and the impulse response h[n] of the system.

▪ This relationship is expressed in compact notation as

y[n] = x[n] ∗ h[n]

where the symbol ∗ represents the convolution operator.



Discrete-Time Convolution

https://e2eml.school/convolution_one_d.html

https://e2eml.school/convolution_one_d.html


Impulse Response

▪ A constant-coefficient linear difference equation is sufficient for

describing a DTLTI system.

▪ The impulse response also constitutes a complete description of a

DTLTI system.

▪ The response of a DTLTI system to any arbitrary input signal x[n] can

be uniquely determined from the knowledge of its impulse response.



Example 3.19



Example 3.19 – Solution 



Example 3.19 – Solution 



Example 3.19 – Solution 



Example 3.19 – Solution 



Convolution Using MATLAB

>> x = [-3, 7, 4];

>> h = [4, 3, 2, 1];

>> y = conv(x, h)

y =

-12 19 31 23 15 4

>> y = conv(h, x)

y =

-12 19 31 23 15 4



Convolution Using MATLAB

>> n = [0:5];

>> stem(n, y);



Problem 3.5



Problem 3.5 (a) – Solution 
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Problem 3.5 (a) – Another Solution 



Problem 3.5 (b) – Solution 

0

0

0

0

[ ] [ ] 2 [ 1] [ 2]

[ ] {1 , 2, 1}

[ ] {2, 1, 1}

[ ] {1 , 2, 1}

[ ] { 1, 1, 2}

[ ] [ ]* [ ] {2, 3, 1, 3, 1}

n

n

k

k n

n

x n n n n

x n

h n

x k

h n k

y n x n h n

  

=

=

=

=

=











= − − + −

= −

= −

= −

− = −

= = − − −



Problem 3.5 (b) – Another Solution 



Problem 3.5 (c) – Solution 
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Problem 3.5 (c) – Another Solution 



Causality in Discrete-Time Systems

▪ A system is said to be causal if the current value of the output signal

depends only on current and past values of the input signal, but not

on its future values.

▪ A discrete-time system defined by the relationship is causal

y[n] = y[n − 1] + x[n] − 3x[n − 1]

▪ A discrete-time system defined by the relationship is non-causal

y[n] = y[n − 1] + x[n] − 3x[n + 1]



Stability in Discrete-Time Systems

▪ A system is said to be stable in the bounded-input bounded-output

(BIBO) sense if any bounded input signal is guaranteed to produce a

bounded output signal.

▪ A discrete-time input signal x[n] is said to be bounded if an upper

bound Bx exists such that

|x[n]| < Bx < ∞     implies that |y[n]| < By < ∞



Causality and Stability in DTLTI Systems

▪ The impulse response of a causal DTLTI should be equal to zero for

all negative index values.

h[n] = 0 for all n < 0

▪ For a DTLTI system to be stable, its impulse response must be

absolute summable.



Problem 3.25 



Problem 3.25 (a) – Solution 

Since h[n] = 0 for all n < 0, the system is causal.

So, the system is not stable.
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Problem 3.25 (c) – Solution 

Since h[n] = 0 for all n < 0, the system is causal.

So, the system is not stable.
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Problem 3.25 (e) – Solution 

Since h[n] ≠ 0 for all n < 0, the system is not causal.

So, the system is stable.
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